\r

¥ SnapEDA
SnapEDA Take Home Challenge

Goal

The goal of this exercise is to modify a parsing script to fix 3 issues. Follow the instructions
below to setup and fix these issues.

Software and setup needed

e Python (https://www.python.org/downloads/)
e Eagle PCB (http://www.autodesk.com/products/eagle/free-download)

Instructions

The script you'll be fixing will parse .bsdl files (a type of descriptive language that describes
the properties of a PCB component) and outputs an .lbr file (a file that can be opened with
the Eagle PCB software to view the component’s CAD model)

Unzip the BSDL Parser.zip, you'll find the following files:
e parse_bsdl.py — the parsing script that can parse a .bsdl files in the ‘bsdl_files’
folder and outputs the .lor file
e create_xml.py — used by parse_bsdl.py to generate the output
o TemplateEagleWithPackage.lbr — used by parse_bsdl.py as a template to
generate the output
o Bsdl_files folder — contains a 2 .bsdl files used for your testing

Try running the script by going to terminal (or command prompt), navigate to the BSDL
Parse folder and enter:

python parse_bsdl.py bsdl_files/XCF32P.bsdl

This will parse the XCF32P.bsdl and output XCF32P.lbr in the ‘bsdl_files’ folder. If you
have Eagle installed, you can double-click the .lbr file to open it in Eagle (sometimes, you



might need to open it twice). You should see XCF32P under the Device column, double-
click to open it and you should see the following:

BA & moaEHD EE QQQa & © 0[]
© o ' incn-0.009) [ E
g
" >VALUE
............ 0 E”JSIIIKI _‘."I 7 Y L I I
N ‘% h wecd "
CE —' "l voco
o CF b “ip— CEO
:B" “B— CLkoUT -
s CLE  —" wh oo
0k
.................. EM_EXT SEL —4b" “— 1
:@ ............ OE_RESET —' , e >NAM
: “b— D2 10,.3,2
Bin
REY_SELD —t' Ll S l
’ Package A Variant
REV SEL1 —d "p— o5 QFP80P1600X1600X120-64N " 1
) “tb— D&
ToK  —t' Y N—
o —" "— T
“B— DHC
™ —p’ ) New Connect
Prefix U
Description [Technoloaies/Attributes| ~ Value O off 1 0n

4 Left-click&drag to define group (or left-click to start defining a group polygon)

Modify the parser script to fix the following 3 issues:
1. Make the pin names appear on the inside of the box.

When you open the .lbr file in Eagle, you'll see a box with pins on either side (this is
the symbol of the component). The pin names are on the outside of the box, modify
the parser so that the pins are on the inside of the box. Here is an example of
another symbol with the pin names on the inside of the box:



Tk .
GND =it

Note: you can also open the .lbr file using a text-editor to see the markup language
describing the file (it uses an XML format)

. Make the pin type label more descriptive (‘in’, ‘out’, ‘pwr’)

Currently, you'll see a green circle with ‘io’ labeled next to each pin. Modify the
script so that the label will say:

‘in” — for input pins

‘out’ — for output pins

‘io” — for input and output (inout) pins
‘pwr’ — for VCC and GND pins

If you open the XCF32P.bsdl file in a text editor, you'll see the types of pins
described on lines 47 — 80. You can parse this information to generate the correct
pin label.

Here is an example of a symbol with correct labels:



outoag -i-BIC)
o2l TS
o2 GND @1
o/l GND@2

3. Fix the parser to parse multiple pin mappings per line
Try parsing the other bsdl file:
python parse_bsdl.py bsdl_files/XC2C64A.bsdl
You'll get an error. This is because the parser can’t handle multiple pin mappings
per line (lines 134-147 of XC2C64A.bsdl). In comparison, the previous bsdl had
only 1 mapping per line (lines 92 - 118 of XCF32P.bsdl)

Modify the parser so that it can parse pin mapping description in XC2C64A.bsdl
file.



